AcmeAir: Lessons learned from a
large-scale cloud deployment

Paul Vytas, Gary Zeng November 19, 2013

© 2013 IBM Corporation
2

Table of Contents

= Intro & Goals

« Acme Air application and benchmark

« Large scale deployment of Acme Air

= Best Practices and Lessons Learned

= Acknowledgements and Reference links

© 2013 IBM Corporation

Introduction

A cloud infrastructure holds a lot of appeal for testing:

«Quick access to a very large number of servers on short notice. Especially convenient for
short-duration large-scale tests.

«Self-service, don’t have to make requests to sys admin.
«Avoids lengthy capital planning cycle

«More efficient financially.. Only pay for what you use.

But there are some limitations as well:

«Shared environment - Less predictable performance (CPU, network, disk); can have
unexpected outages.

«Less flexibility - standardized templates for 1/O, CPU, memory, disk, OS
«New technology, components and tools are changing frequently.

«Need to plan for and regularly verify usage to stay within your budget.

© 2013 IBM Corporation

Acme Air application and benchmark

© 2013 IBM Corporation

Acme Air Overview

This application shows an implementation of a fictitious airline called "Acme
Air'. The application was built with the some key business requirements:

«the ability to scale to billions of web API calls per day,

«the need to develop and deploy the application in public clouds (as
opposed to dedicated pre-allocated infrastructure), and

«the need to support multiple channels for user interaction (with mobile
enablement first and browser/Web 2.0 second).

© 2013 IBM Corporation

Acme Air Functionality

= | Classic Web 2.0 Interactions !

Web Channel

Classic Web 2.0 Interactions
Z Indirect Interaction (geospatial)

Mobile Cha:nel\{ voincsions | g9 Customer/

2 e ¢ Authentication
S R —F
/' :
: Airports

{' | Events Customer Events
- Flight Event
Business Rartners ight Events

© 2013 IBM Corporation

System Architecture

Browser
App

jQuery/DOJO

Hybrid
Worklight

App
jQuery/DOJO

© 2013 IBM Corporation

Large Scale Testing of Acme Air

© 2013 IBM Corporation

Scale-out Topology

JMeter
(load gen)
l \

L\

IBM
Worklight

Nginx

WebSphere B
Liberty N

I \ WebSphere

| eXtreme

Ngnix I Scale

IBM SmartCloud Enterprise

(Iﬂ,';’('f;g;) “@ .
=—lg®

© 2013 IBM Corporation

" Performance and Scalability Results

AP! Billionaires Club acme~airlines

(the benchmark)

twitker 13 billion API calls / day sy 201
Avg/Min/Max Throughput
49,572/48,559/50,472 req/sec

API calls per day: 4.3 Billion

Benchmark Start/End: 013/04/24 04:33:30/04:43:17

Type of Server Number of Servers

Google 5 billion API calls / day i 2010

L 5 billion API calls / day ocoser 2009)

NETELIX 1.4 billion API calls / day sy 2012

accuwzzmer 1.1 billion API calls / day o 2019

1 billion API calls / day sy 2012

ey 1 billion API calls / day (o1 2012 WebSphere Liberty 51
BT 1 billion APl calls / day wanvary 2012 WebSphere eXtreme Scale 47
IBM Worklight 28

Source: Programmableweb.com 2012 Load Balancers 10

Can you stand up to the mobile channel?
Can you scale without bounds?
*Performance? Operations?

Learn how to with Acme Air
*Architecture, sample code, performance results,
ops practices, and more

© 2013 IBM Corporation

Best Practices and Lessons Learned

© 2013 IBM Corporation
12

Automate some, Automation more, AUTOMATE EVERYTHING!

« Anything done by hand is a bug and won’t web scale. Logging on each server and running a
script is OK when you only have a few servers, but completely impractical for 100’s of VMs.

= Anything that isn’'t under a version control system (or on instance disk image) is a bug and
will create chaos

© 2013 IBM Corporation
13

Scale out in steps

= This strategy did work as expected. We initially started with a minimum configuration (1 load
driver, 1 app server, 1 datastore) then once it was working moved to 2-2-2, 4-4-4, 16-16-16,
etc.

= After each step we adjusted the configuration to make sure we could load up the app
servers as evenly to 95% CPU utilization and looked for bottlenecks

« During 1-1-1 did many things manually, but at 4-4-4 realized we could not do everything by
hand. started adding more automation. Added load balancer after 4-4-4

« Cannot forsee what automation needs to be done up-front.. We incrementally added extra
automation as we scaled ouit.

© 2013 IBM Corporation
14

Get to know your cloud provider

Understand your cloud provider's APIs

« Avoid surprises! Learn about maintenance windows, provisioning limitations, runtime
performance, variability of performance

= May need to arrange agreement with provider for larger topologies

may want get your VM's co-located if bandwidth is an issue.

« pitfalls of Public IP's for testing:
— Scanners and attacks on your VMs can load them down and mess up testing results,
— Likely will require additional effort setting up firewalls, etc.
— Many cloud providers can arrange for a private subnet in cloud but this costs.

© 2013 IBM Corporation
15

Assume that a VM can fall at any time

« With a large number of active VM’s, some failures are inevitable. This can be deployments
that fail, VMs were not fully alive or die during a test run or an application that hangs.

= Failed VMs can be fixed by killing and re-creating but failures can ruin a test run. Suggest a
sanity-test prior to starting a big test run.

= Monitoring is critical, but difficult when there are 100's of VMs.. Tools are still evolving and
we needed to create some custom automation.

= need to be able to detect imbalances, image not working as it should, VM mis-behaving
= Need to track state of VMs.. some will take more time to come up.

= need to automate log collection and diagnostic/troubleshooting steps.. with 100’s of VMs we
cannot do this by hand.

© 2013 IBM Corporation
16

Have a strategy for doing updates

= Inevitably during the testing and scale-out process changes will be needed for configuration
files and code.

= Discovered that re-generating VM images then restarting 100’s of VMs can take a long time.
For small changes it was much faster to roll out application or configuration changes as
needed to VMs. Of course this needs to be automated.

© 2013 IBM Corporation
17

Know your costs and keep track of usage

pay-as-you-go is convenient, and single VM’s are cheap (as low as 6 cents/hr per VM) but
costs can add up fast. Make sure that your provider plan matches your goals and your
budget.

= Provision for start of test, then deprovision at end of test.
= Shut down instances when not being used, reprovision stalled VMs.

Use private IP’s when pushing load (public IP’s can cost you I/O charges)

18

© 2013 IBM Corporation

Summary of Lessons Learned

Automate some, Automation some more, AUTOMATE EVERYTHING!
Scale out in steps

Get to know your cloud provider

Assume that a VM can fail at any time

Have a strategy for doing updates

Know your costs and keep track of usage

19

© 2013 IBM Corporation

Acknowledgments & References

© 2013 IBM Corporation
20

Many thanks to...

The IBM team that created AcmeAir and its initial cloud deployment:

— Andrew Spyker - Performance Architect and Strategist, Emerging Technology Institute
— Doug Tollefson - WebSphere Application Server Performance

— Gary Zeng - Software developer, WebSphere eXtreme Scale

— Jeffrey Garrat - Senior Software Engineer - WebSphere Technology Institute

— Yang Lei - Senior Software Engineer, Emerging Technology Institute

© 2013 IBM Corporation
21

References

« Github for getting a copy of AcmeAir:
https://github.com/acmeair/acmeair

« Github Wiki describing how to install and run the AcmeAir application:
https://github.com/acmeair/acmeair/wiki

« Andrew Spyker’s blog on cloud issues and AcmeAir activities:

Moss Uchida and Roland Gee are showing demos of AcmeAir in the
CASCON Technology Showcase in booth LO8

http://ispyker.blogspot.ca/

